Math 210

Quiz \# 2, 16 November, 2013

1. (a) State 5 important properties of a continuous function $f:[a, b] \rightarrow \mathbb{R}$.
(b) Prove that a continuous function $f: K \rightarrow \mathbb{R}$, where K is a compact set, attains its supremum at a point in K.
2. Let $f: X \rightarrow Y$ be a given function, and suppose that $f^{-1}(C)$ is an open subset of X whenever C is an open subset of Y.
(a) Prove that f is continuous on X.
(b) Prove that $f^{-1}(B)$ is a closed subset of X whenever B is a closed subset of Y.
(c) If $Y=\mathbb{R}$, and f is continuous, and $a \in \mathbb{R}$, what kind of set is $A=\{x \in$ $X: f(x) \leq a\}$? Justify your answer.
3. (a) If f and g are uniformly continuous on a set E, prove that the function $f+g$ is uniformly continuous on \dot{E}
(b) Let $h:(0, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
h(x)=\cos 2 x+x \sin \frac{1}{x}, 0<x<\infty
$$

Prove that h is uniformly continuous on $(0, \infty)$.
4. A function $f:(a, \infty) \rightarrow \mathbb{R}$ is differentiable on (a, ∞), and satisfies

$$
\lim _{x \rightarrow \infty}\left(f^{\prime}(x)+\alpha f(x)\right)=0
$$

where α is a positive constant.
(a) Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
(b) Suppose that g is another differentiable function on (a, ∞), that satisfies

$$
\lim _{x \rightarrow \infty}\left(g^{\prime}(x)+\alpha g(x)\right)=L
$$

where $\alpha>0$, and L are constants. Find $\lim _{x \rightarrow \infty} g(x)$, and $\lim _{x \rightarrow \infty} g^{\prime}(x)$ and prove your answers.
5. Let

$$
f(x)=\frac{1-\cos x}{x}, 0<x<\pi / 2
$$

Prove that f is increasing on $(0, \pi / 2)$, and obtain the inequality

$$
\sin ^{2} \frac{x}{2} \leq \frac{x}{\pi}, 0<x<\pi / 2
$$

